Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Sheng Zhang, ${ }^{\text {a* }}$ Jun Wan, ${ }^{\text {b }}$ Chun-Li Li, ${ }^{\text {a }}$ Xue-Mei Li ${ }^{\text {a }}$ and Ping-Kai Ouyang ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.138$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2-Fluoro-5-methylphenyl)-2-oxo-1-(1H-1,2,4-triazol-1-yl)ethyl morpholine-4-carbodithioate

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$, molecules are linked into ribbons parallel to the b axis by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The packing is further stabilized by $\pi-\pi$ interactions involving the fluoromethylphenyl rings into twodimensional layers in the $b c$ plane.

Comment

We have recently reported the structure of 2-(4-chlorophen-yl)-2-oxo-1-(1H-1,2,4-triazol-1-ylmethyl)ethyl morpholine-4carbodithioate, (II) (Wang et al., 2005). As part of our ongoing studies of triazole compounds, the title compound, (I), has been synthesized and its structure is reported here (Fig. 1 and Table 1).

(I)

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987), and are comparable to the corresponding

The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.

Received 14 December 2005 Accepted 15 December 2005 Online 23 December 2005
\qquad

Figure 2
A view down the a axis, showing the ribbons along the b axis and $\pi-\pi$ interactions. Hydrogen bonds are indicated by dashed lines.
values in (II). The dihedral angle between the C1-C6 and N2$\mathrm{N} 4 / \mathrm{C} 14 / \mathrm{C} 15$ rings is $79.0(2)^{\circ}$. The morpholine ring adopts a chair conformation, and atom S 2 is synperiplanar with respect to C 8 , the $\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 9-\mathrm{S} 2$ torsion angle being $-7.4(2)^{\circ}$. In the crystal structure, molecules are linked into ribbons parallel to the b axis (Fig. 2) by $\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O} 2$ and $\mathrm{C} 13-$ $\mathrm{H} 13 A \cdots \mathrm{~N} 4$ hydrogen bonds (Table 2). $\pi-\pi$ stacking interactions involving the $\mathrm{C} 1-\mathrm{C} 6$ benzene rings [centroid Cg ; $C g \cdots C g(1-x, 1-y, 1-z)=3.652 \AA]$ further stabilize the packing, forming two-dimensional layers in the $b c$ plane.

Experimental

The title compound was prepared by the method of Wan et al. (2005). Single crystals suitable for an X-ray diffraction study were obtained by slow evaporation of an ethyl acetate-alcohol ($1: 1 \mathrm{v} / \mathrm{v}$) solution over a period of one week.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=380.46$
Triclinic, $P \overline{1}$
$a=6.7311(13) \AA$
$b=7.7910(15) \AA$
$c=18.107(4) \AA$
$\alpha=98.200(3)^{\circ}$
$\beta=92.649(4)^{\circ}$
$\gamma=109.900(3)^{\circ} \AA^{\circ}$
$V=879.1(3) \AA^{3}$

Data collection

Siemens SMART 1000 CCD area-	3385 independent reflections
detector diffractometer	2534 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.014$
Absorption correction: multi-scan	$\theta_{\max }=26.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$h=-8 \rightarrow 7$
$T_{\min }=0.910, T_{\max }=0.971$	$k=-9 \rightarrow 9$
4955 measured reflections	$l=-16 \rightarrow 22$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0636 P)^{2}\right. \\
& \quad+0.3536 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }= \\
& -0.18 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.138$
$S=1.06$
3385 reflections
226 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

S1-C9	$1.797(3)$	F1-C1	$1.361(3)$
S1-C8	$1.799(3)$	O1-C7	$1.208(3)$
S2-C9	$1.660(3)$		
N2-C8-C7	$110.2(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{S} 1$	$105.23(18)$
N2-C8-S1	$112.22(18)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O}{ }^{2}{ }^{\mathrm{i}}$	0.97	2.53	$3.207(4)$	127
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{~N} 4^{4 i}$	0.97	2.50	$3.267(5)$	135

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $x+1, y+1, z$.
All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Project of Educational Administration of Shandong Province (No. J04B12) and the outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wan, J., Li, C.-L., Li, X.-M. \& Zhang, S.-S. (2005). Acta Cryst. E61, o2426o2427.
Wang, Z.-Y., Wan, J., Li, X.-M., Li, C.-Y. \& Zhang, S.-S. (2005). Acta Cryst. E61. Submitted. (ER6039).

